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Abstract

A new metric for climate model evaluation has been developed that potentially miti-
gates some of the limitations that exist for observing and representing field and space
dependencies of climate phenomena. Traditionally such dependencies have been ig-
nored when climate models have been evaluated against observational data, which5

makes it difficult to assess whether any given model is simulating observed climate for
the right reasons. The new metric uses Gaussian Markov Random Fields for estimat-
ing field and space dependencies within a first order grid point neighborhood structure.
We illustrate the ability of Gaussian Markov Random Fields to represent empirical esti-
mates of field and space covariances using “witch hat” graphs. We further use the new10

metric to evaluate the tropical response of a climate model (CAM3.1) to changes in two
parameters important to its representation of cloud and precipitation physics. Overall,
the inclusion of dependency information did not alter significantly the recognition of
those regions of parameter space that best approximated observations. However there
were some qualitative differences in the shape of the response surface that suggest15

how such a measure could affect estimates of model uncertainty.

1 Introduction

Within the climate assessment community, there is an interest to develop metrics of
how well simulations reproduce observed climate for purposes of comparing models,
driving model development, and evaluating model prediction uncertainties (Gleckler20

et al., 2008; Reichler and Kim, 2008; Santer et al., 2009; Knutti et al., 2010; Weigel
et al., 2010). Nevertheless, a certain level of skepticism exists about whether a scalar
metric can be sufficiently informative for these purposes. Climate phenomena involve
interactions of multiple quantities on a wide range of time and space scales from min-
utes to decades (and longer) and from meters to planetary scales. Thus it can be25

challenging to summarize what is physically meaningful. The most common approach
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to climate model evaluation among climate scientists is to display maps of long-term
means of well-known quantities (e.g. temperature, sea-level pressure, precipitation)
whose distribution is familiar and well understood in order to identify sources of model
error. The Taylor metric that is often generated as part of model evaluation is based
on spatial means of squared grid point errors for individual quantities (Taylor, 2001).5

Such measures neglect field and space dependencies and thus may be insensitive to
mechanisms giving rise to model errors. There is a need to develop metrics that can
evaluate whether a model is capturing observed space and field relationships suffi-
ciently well (Braverman et al., 2011). The hope is that by accounting for relationship
information within climate model metrics, they will prove to be more useful for scientific10

evaluation.
Given that there is only a limited amount of observations available to quantify field

and space relationships of climate phenomena, data assimilation is the most common
approach to fill in gaps in the observational record of a climate model (Trenberth et al.,
2008). While assimilation data products help solve some aspects of the problem of how15

one compares point measurements to the scales resolved by climate models, these
data products include the space and field dependencies of the model that was used to
assimilate the data. Here we introduce a new kind of metric based on Gaussian Markov
Random Fields that only needs limited data to decipher space and field dependencies
of climate phenomena.20

We define a new Z test statistic, alternatively referred to as a log-likelihood or cost
for assessing the significance of a discrepancy between model output and observa-
tions. The statistic makes use of Gaussian Markov Random Fields to estimate field
and space dependencies that exist within gridded climate model output that can be
assessed against space and field dependent observational data. The matrix form of25

the test statistic is given by:

v TS−1 ⊗ (αI+ (1−α)Q)v (1)
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where v is the vector of differences between model output and observations with a
length given by the product of the number of observational fields and number of grid
points, nobs×npts, α is a scalar with a value close to zero, I stands for an identity matrix
(a diagonal matrix of ones) of a dimension corresponding to v , and Q is a precision
matrix of dimension npts×npts from a Gaussian Markov Random Field (GMRF) induced5

by a first order neighborhood structure. This cost function captures field dependencies
through S−1 which is a matrix of dimension nobs ×nobs where each of its elements
represents a spatial-average of grid point variances and covariances between fields.
The spatial dependency between grids is approximated through Q. The quantity α
could be interpreted as a weight of the spatial relationship between grid cells. The10

Kronecker product ⊗ provides a means for associating the different matrix dimensions
of the metric, essentially combining its field and space components.

The sections of this paper explain, test, and provide examples of how various compo-
nents of Eq. (1) work. Section 2 gives a brief introduction to GMRFs. This section will
allow us to understand how Q is obtained and the information that it provides about15

spatial dependency between grid cells. In this section we also define and discuss
Kronecker products, and how to use this concept to generalize GMRF ideas to deal
with more than one field. Section 3 introduces a graph for testing the extent to which
Eq. (1) captures observed variance-covariances of tropical temperature, precipitation,
sea level pressure, and upper level winds. Finally, in Sect. 4, we consider the field and20

space dependencies that are captured by the GMRF-based metric within the response
of an atmospheric general circulation model CAM3.1 to two model parameters impor-
tant to cloud and precipitation physics. What we learned in general is that including
the space and field dependencies provides some qualitatively different perspectives
about which model configurations are more similar to what is observed. For the exam-25

ple we consider, the effects of space dependencies turn out to be more critical than
field dependencies.
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2 Gaussian Markov Random Fields (GMRFs)

A Gaussian Markov Random Field (GMRF) is a special case of a multivariate normal
distribution, one that satisfies additional properties related to conditional independence.
The density of a normal random vector x = (x1,x2, ...,xn)T (where “T” denotes the op-
eration of transposing a column to a row), with mean µ (n×1 vector) and covariance5

matrix Σ (n×n matrix), is

f (x) = (2π)−n/2|Σ|− 1
2 exp

{
−1

2
(x−µ)TΣ−1(x−µ)

}
(2)

Here, µi = E (xi ), Σi j = Cov(xi ,xj ), and Σi i = Var(xi ) > 0. All eigenvalues of Σ must be
greater than zero, otherwise Σ becomes a singular matrix and does not define a valid
multivariate normal distribution. It can also be shown that if all eigenvalues of Σ are10

positive then all eigenvalues of Σ−1 are also greater than zero. We define Q = Σ−1

and refer to Q as the precision matrix, and denote x ∼ N(µ,Q) to represent x as a
multivariate normal distribution with vector mean µ and precision matrix Q.

2.1 Precision matrix of a GMRF

The precision matrix Q of a GMRF is an operator for obtaining information about depen-15

dencies among neighboring grid cells. Although Q is sparse, its inverse, as a model for
the covariance matrix Σ, presumes all grid points are conditionally dependent. Q needs
to be constructed such that it:

– Reflects the kind of spatial dependency we assume our data has.

– Yields a legitimate covariance matrix, Σ, i.e. symmetric and positive definite, so20

that it can be used to compute a likelihood function.

Consider x, a vector of measurements on a 2×2 lattice, as represented in Fig. 1.
Assume a neighborhood structure between the four elements of x. In Fig. 2, the neigh-
bors for each element of x are defined graphically. Given the neighborhood structure

5
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shown in Fig. 2, the precision matrix that works for this problem is

Q =


2 −1 −1 0

−1 2 0 −1
−1 0 2 −1

0 −1 −1 2


which follows these rules,

– Qi j = −1, if xi and xj are neighbors.

– Qi j = 0, if xi and xj are not neighbors.5

– Qi i gives the total number of neighbors of xi .

While the implementation of GMRFs is simple, the theory and mathematics are rather
involved. A fuller description of the mathematics of this example is provided in the sup-
plemental material. It may also not be immediately clear to a physical scientist that
such a simple specification, where only relationships among neighboring grid cells are10

taken into account, would be sufficient to quantify correlated quantities across large dis-
tances. The mathematics of working with precisions allows one to infer the net effect of
long distance relationships through relationship information that exists among neigh-
boring cells. While the GMRF approach does not include information about particular
teleconnection structures such as ENSO, the approach is sensitive to how changes15

in large scale conditions induce local covariances across multiple fields within the en-
tire domain. In this way teleconnections are represented through a conditional depen-
dence.

A problem arises in that one of the eigenvalues of the Q matrix is 0, which implies that
this definition of the precision matrix does not induce an invertible covariance matrix.20

This problem is solved by using αI+ (1−α)Q, instead of Q. If α is small, the neighbor-
hood structure remains essentially unchanged. Section 3 describes our approach to
specifying a value for α.

6
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2.2 Generalizing concepts to deal with multiple fields

The generalization of Q to handle multiple fields will be illustrated by an example using
x and y which represent observations for two different fields of interest. These obser-
vations are taken on a 2×2 lattice. First, x and y are combined to form one vector
v as follows: v T = (x1,x2,x3,x4,y1,y2,y3,y4). The average covariances among these5

observations can be represented by a 2×2 matrix between the first field, x, and the
second field, y:

S =
(

σ11 σ12
σ12 σ22

)
where Var(x) = σ11, Var(y) = σ22, and Cov(x,y) = σ12. Recalling that the correlation
between fields 1 and 2 is defined as: ρ = σ12√

σ11σ22
, one may show that the inverse of S is10

S−1 =

( 1
σ11(1−ρ2)

−ρ
(1−ρ2)

√
σ11σ22−ρ

(1−ρ2)
√
σ11σ22

1
σ11(1−ρ2)

)
=:

(
S−1

11 S−1
12

S−1
12 S−1

22 .

)
If we consider the Kronecker product in Eq. (1) when α = 0,

S−1 ⊗Q =

(
S−1

11 Q S−1
12 Q

S−1
21 Q S−1

22 Q

)
then

v TS−1 ⊗Qv = S−1
11 x

TQx+S−1
12 y

TQx+S−1
21 x

TQy +S−1
22 y

TQy.15

In this last expression, one can see that the inverse of S in combination with the Kro-
necker product with Q includes terms involving cross products between fields. The sup-
plemental carries this expression one step further by estimating the conditional mean
for the the first element of v to illustrate how this element is related to itself and its
neighbors across multiple fields.20

7
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3 A test of GMRF estimates of variance

GMRFs provide a way to approximate field and space dependencies contained in the
inverse covariance matrix Σ−1 of Eq. (1) by its GMRF equivalent S−1 ⊗ (αI+ (1−α)Q).
In this section, we will test how well GMRFs are able to reproduce observed space
and field dependencies. This may be achieved by comparing field and spatial variance5

and covariance estimates obtained from the inverse of the GMRF equation with those
obtained empirically from observational data. It turns out this comparison is sensitive
to the value that is selected for α. Fortunately, the optimal choice of α depends only
on geometric considerations of the neighborhood model that is used for GMRF and
the number of grid points in the fields and not the properties of the field data. We10

introduce a “witch hat” graph that provides a compact summary of variance-covariance
information between these two methods in order to show that GMRFs do a reasonable
job approximating observed field and space relationships.

3.1 Finding an appropriate value of α

In the effort to compare space and field dependencies approximated by GMRFs with15

empirical estimates we need to determine an optimal value for α. In order to carry
out this comparison, we need to find the inverse of S−1 ⊗ (αI+ (1−α)Q), our proposed
precision matrix based on GMRF. Using results of Kronecker products, we have that[
S−1 ⊗ (αI+ (1−α)Q)

]−1
= S⊗(αI+(1−α)Q)−1. Letting Q∗ = (αI+(1−α)Q)−1, then S⊗

Q∗ for two fields can be written as20 (
S11Q∗ S12Q∗

S12Q∗ S22Q∗

)
.

If n is the total number of grid points of the lattice, S⊗Q∗ is a (2×n)× (2×n) covari-
ance matrix. Note that each element of diag(Si jQ

∗) contains the estimated variance or
covariance at each grid point for fields i and j using a GMRF where i can be equal

8
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to j . If we average these estimates across the whole lattice, we obtain Gi j , the GMRF
estimate of the variance or covariance. Therefore,

Gi j =
Si j
∑n

k=1Q
∗
kk

n
=

Si j tr(Q∗)

n
(3)

where tr(Q∗) denotes the trace of Q∗ and Q∗
kk are its diagonal elements. We will now

select a value for α that allows the GMRF estimate for field variances and covariances5

to be equal, on average, to what has been calculated for S. In order to achieve this, Gi j
needs to equal Si j . Satisfying this condition is equivalent to finding the solution for

tr(Q∗)
n

= 1. (4)

It may not be so obvious what the diagonal elements of Q∗ are. However, one can
use the fact that for any matrix A that admits a Singular Value Decomposition, tr(A) is10

equal to sum of its eigenvalues. In our case, if the eigenvalues of Q are λ1,λ2, . . .,λn,
the eigenvalues of αI+ (1−α)Q are α+ (1−α)λ1,α+ (1−α)λ2, . . .,α+ (1−α)λn. The
eigenvalues of Q∗ = (αI+ (1−α)Q)−1 are (α+ (1−α)λ1)−1, (α+ (1−α)λ2)−1, ..., (α+ (1−
α)λn)−1. This implies that in order to satisfy Eq. (4), we need to find α from

f (α) =
n∑

i=1

1
n(α+ (1−α)λi )

= 1. (5)15

Figure 3 shows the relationship between various values of α and f (α). The eigenvalues
used to obtain this figure correspond to a precision matrix, Q, for a GMRF induced by
a first order neighborhood structure and considering a 128×22 lattice (which is the
dimension of our data). From the figure we can see that the curve crosses the value of 1
when α is close to 0. By using linear interpolation, we determine that α is approximately20

0.0026.

9
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3.2 “Witch hat” comparison test

To illustrate any differences that may exist between empirical estimates of the covari-
ance matrix Σ and its GMRF equivalent S⊗ (αI+ (1−α)Q)−1 , we rely on a graph that
shows the spatial average grid point variance and covariances as a function of distance
for cells and their neighbors. We compute the average entries of the covariance matrix5

corresponding to each grid cell and the corresponding element to the north (for the pos-
itive distances) or to the south (for the negative distances) relative to the main diagonal
of the matrix. The zero distance case is the average of variances of the main diagonal.
Alternatively, we can produce a graph that considers the east and west directions. On
average, covariances decrease with distance making the graph have the shape of a10

witch’s hat. This graph is symmetric because covariance matrices are symmetric.
Figure 4 shows a witch hat test of estimated variances for air temperatures simu-

lated by the Community Atmosphere Model version 3.1 (CAM3.1). The variances are
estimated from 15 samples of two year mean summertime temperatures. Setting α = 1
provides a solution to Eq. (5), however, this will shut down the effect of Q and only the15

variances at the reference point (lag 0) will be well estimated. On the other hand, when
α = 0.0026, we allow Q to play more of a role which results in a better representation
of covariances at neighboring points (lags different of zero).

4 Climate response to uncertain parameters

In this section we show how inclusion of field and space dependencies using GMRF af-20

fect comparisons of the Community Atmosphere Model (CAM3.1) (Collins et al., 2006)
with observations. We consider CAM3.1’s response to to changes in parameter ke,
which controls rain drop evaporation rates, and parameter c0, which controls precipi-
tation efficiency through conversion of cloud water to rain water. For this comparison
we only consider the response for the June, July, and August (JJA) seasonal mean25

between 30◦ S to 30◦ N on four variables including 2 m air temperature (TREFHT), 200-

10
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mbar zonal winds (U), sea level pressure (PSL), and precipitation (PRECT). Experi-
ments with CAM3.1 use observed climatological sea surface temperatures and sea ice
extents. Each experiment with CAM3.1 is 32-years in duration.

The observational data that is used to evaluate the model comes from a reanalysis
product ECMWF-ERA interim (Uppala et al., 2005) for 2 m air temperature, 200-mbar5

zonal winds, and sea level pressure and GPCP (Adler et al., 2009) for precipitation. We
make use of approximately 30 years of JJA mean fields between 1979 and 2009. For
constructing S, we calculate variances from 2-year means (i.e. 15 samples).

A total of 64 experiments were completed, varying each of the two parameters within
an 8×8 lattice. For each experiment we calculate three versions of GMRF-based cost10

(Eq. 1). The first version is the traditional cost based on the assumption of space and
field independence set here by setting the off diagonal components of S to zero and
setting α = 1 . This approach is similar to what has been done previously for Taylor
(2001). The second version of evaluating the cost takes field dependencies into ac-
count by including all components of S and setting α = 1. The third version for the cost15

takes field and space dependencies into account by including all components of S and
setting α = 0.0026.

The correlation matrix, R, corresponding to the S matrix of 2-year JJA seasonal mean
variances and covariances, as estimated from 30 years of observations, is described
in Table 1.20

The primary field correlations are the values of (−0.313) and (−0.219) occurring be-
tween sea level pressure (PSL) and 2 m air temperature (TREFHT), and precipitation
(PRECT) and sea level pressure (PSL), respectively. These correlations make physi-
cal sense in that precipitation mainly occurs within low pressure storm systems which
tends to cool the underlying surface. The other correlations are minimal and there is not25

a good physical argument supporting their relationship. Figure 5 shows a comparison
of the three versions of the GMRF-based cost for the 64 experiments within an 8×8 lat-
tice. All versions of cost result in qualitatively similar results with high and low cost val-
ues roughly in the same portions of parameter space. The main difference among the

11
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versions of cost comes from taking space dependencies into account within the field-
space version. In this case, extremely low values of ke result in higher metric values.
Figure 6 examines the reasons for this by graphing the different field contributions to the
GMRF-based costs for a slice where c0 =0.0035 which corresponds to one of the rows
of the lattice. By plotting everything differenced from metric values at ke=3×10−6, one5

can learn that the biggest qualitative difference comes from cost values associated with
2 m air temperature. Closer inspection of differences between model output and obser-
vations of 2 m air temperature (not shown) indicates that the traditional cost is likely
reflecting large-scale differences over the Southern Hemisphere oceans. Inclusion of
space dependencies places much greater significance on smaller-scale anomalies oc-10

curring over the continents, particularly over the Andes Mountains. This finding is a
result of the mathematics of GMRF. It does not imply that the large-scale errors are of
lesser scientific importance. It only means that GMRF is less sensitive to large-scale
anomalies, perhaps because they are associated with fewer degrees of freedom than
highly structured errors. Understanding whether and how these distinctions aid model15

assessment needs further study. We do find it reassuring that GMRF-based metrics of
distance to observations are similar, at least in the example provided, to a traditional
metric.

5 Summary

We have developed a new test statistic as a scalar measure of model skill or cost20

for evaluating the extent to which climate model output captures observed field and
space relationships using Gaussian Markov Random Fields (GMRFs). The challenge
has been that few observations exist for establishing a meaningful observational basis
for quantifying field and space relationships of climate phenomena. Much of the data
that is typically used for model evaluation is suspected of having its own relationship25

biases introduced by the numerical model that is used to synthesize measurements
into gridded products. The GMRF-based metric overcomes some of these limitations
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by considering field and space variations within a neighborhood structure thereby low-
ering the metric’s data requirements. The form of the metric separates space and field
dependencies using a Kronecker product that, when multiplied out, has all the terms
necessary to represent how different points in space are tied together across multiple
fields. We also include a scalar α that weights the importance of spatial relationships5

between grid cells. Its optimal value turns out to be independent of the data type which
aids the use of GMRFs for comparing model output to data across multiple fields. Us-
ing “witch hat” graphs, we show a first order (nearest neighborhood) structure does
an excellent job of capturing empirical estimates of field and space relationships. We
have applied three versions of cost that selectively turn on or off field and space depen-10

dencies in a climate model (CAM3.1) output against observational products for tropical
JJA climatologies for 2 m air temperature, sea level pressure, precipitation, and 200-
mbar zonal winds. The results show subtle, but potentially important differences among
these versions of the cost which may prove beneficial for selecting models that capture
observed climate phenomena for the right reasons.15

Code and data availability

R code and data for generating Figs. 5 and 6 can be obtained through https://zenodo.
org/record/33765, Nosedal-Sanchez et al. (2015).
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Table 1. Correlation matrix, R, corresponding to the S matrix of 2-year JJA seasonal mean vari-
ances and covariances, as estimated from 30 years of observations of precipitation (PRECT),
sea level pressure (PSL), 2 m air temperature (TREFHT), and 200-mbar zonal winds (U).

PRECT PSL TREFHT U

PRECT 1 −0.219 −0.047 0.015
PSL −0.219 1 −0.313 −0.112
TREFHT −0.047 −0.313 1 −0.145
U 0.015 −0.112 −0.145 1
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Figure 1. Graphical representation of 2×2 lattice and elements of x.
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Figure 2. Neighbors of x1, x2, x3 and x4.
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Figure 3. α vs. f (α).
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Figure 4. “Witch hat” graphs for air temperature on a 128×22 lattice of the tropics from 30◦ S
to 30◦ N. The empirical estimates are given by the solid red line. The GMRF estimate is given
by the dashed blue line.
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Figure 5. Three versions of the GMRF-based cost as a function of two CAM3.1 parameters
ke and c0 that assumes the data has (a) field and space independence, (b) field dependen-
cies, and (c) field and space dependencies. Each color represents ten percentiles of the cost
distribution. The cost is shown relative to the value of the default model configuration.
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Figure 6. Different field contributions to the GMRF-based costs for a slice of Fig. 5 where
c0 =0.0035. Cost values are relative to the default parameter setting for ke. Note that total cost
(black dashed line) is a weighted sum of field contributions as given by S−1 with contributions
from sea level pressure (PSL, red line), 2-m air temperature (TREFHT, green line), 200-mbar
zonal winds (U , blue line), and total precipitation (PRECT, cyan line).
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